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This paper examines the dynamics of geostrophic flows with large displacement of 
isopycnal surfaces. The /3-effect is assumed strong, i.e. the parameter (R, cot @/Re 
(where I9 is the latitude, R, is the deformation radius, R, is the Earth’s radius) is of the 
order of, or greater than, the Rossby number. A system of asymptotic equations is 
derived, with the help of which the stability of an arbitrary zonal flow with both vertical 
and horizontal shear is proven. It is demonstrated that the horizontal and vertical 
spatial variables in the asymptotic system are separable, which yields a ‘horizontal’ set 
of evolutionary equations for the amplitudes of the barotropic and baroclinic modes 
(the vertical profile of the latter is arbitrary). 

1. Introduction 
Over the past decade there has been considerable interest in large-amplitude 

geostrophic flows of a stratified fluid, where the variations of isopycnal surfaces are of 
the order of their average depths. In most cases those were examined within the 
framework of the two-layer model (e.g. Killworth, Paldor & Stern 1984; Sakai 1989; 
Paldor & Ghil 1990; Cushman-Roisin, Sutyrin & Tang 1992), which, in particular, 
demonstrated (Benilov 1992) that the large-amplitude geostrophic dynamics strongly 
depend on the ratio of the Rossby number Ro to the ‘,!?-effect number’ 

p = Rdcot0/R,, (1) 

where I9 is the latitude, Re is the Earth’s radius, 

g is the acceleration due to gravity, S p l p ,  is the relative density variation, f = 20sin 
# is the Coriolis parameter, 0 is the frequency of the Earth’s rotation and H is the 
total depth of the fluid. In the case of weak /3-effect, 

/3 5 Roi, (3) 

large-amplitude flows are unstable with respect to perturbations of wavelength of the 
order of R,. In the transitional range, 

RO; < p < R ~ ,  

the spectral margins of the instability shift towards the short-wave region, and in the 
limit of strong ,!?-effect, 

p 2 Ro, (4) 
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the instability disappears completely (see Benilov 1992). It should be noted, however, 
that the oceanographic relevance of these asymptotic regimes has not yet been 
addressed. 

The ' two-layer ' results obtained by Benilov (1992) have been partly generalized for 
continuous stratification by Benilov (1993). It was demonstrated that in the case of 
weak /3-effect (3) ,  the full set of fluid dynamics equations can be reduced to a relatively 
simple asymptotic system which exhibits exactly the same short-wave instability as its 
two-layer analogue. 

In this paper the case of strong /3-effect (4) will be generalized for continuous 
stratification. The physical relevance of this regime is discussed in $2. An asymptotic 
system of governing equations will be derived in $3.  The stability of a zonal flow with 
both vertical and horizontal shear is examined within the framework of the equations 
derived in $4. It is demonstrated ($5 )  that the horizontal and vertical spatial variables 
in the asymptotic equations are separable, which yields a 'horizontal' system for the 
amplitudes of barotropic and baroclinic modes. 

2. Are oceanic fronts geostrophic? 
Fronts in the ocean are characterized by large displacement of isopycnal surfaces 

and therefore provide a natural application for the present work. However, they are 
commonly assumed ageostrophic or, at most, semi-geostrophic. In this section, we 
shall analyse experimental data on the North Pacific frontal system and point out a 
number of examples of geostrophic fronts. We shall also demonstrate that both weak- 
and strong-/3-effect regimes are possible in the ocean. 

For this purpose we shall use Roden's (1975) observations of the North Pacific 
frontal system; attention will be focused on the Kuroshio and Oyashio frontal flows 
and the subarctic and subtropical fronts. At the location where the measurements were 
made, the subtropical front could be subdivided into two jets (their axes located at 
latitudes 27" 30' N and 31" 30' N, see figure 9 of Roden's paper); the parameters of 
these jets will be estimated separately. The Oyashio current, in turn, consisted of up to 
six separate jets - we shall estimate the parameters of the strongest one and the weakest 
one (located at longitudes 143" 20' W and 145" 00' W, respectively ~ (see figure 6 of 
Roden's paper). 

It is important to understand that any front can be characterized by either the width 
of the frontal flow, or the width of the corresponding density front (the difference can 
be strong, as the former is usually noticeably wider). Since we are going to calculate the 
Rossby number (which does not characterize the density of the flow, but its velocity), 
we shall estimate the width of the current. This question will be discussed in more detail 
later in this section. 

The parameters of the North Pacific frontal system are represented in table 1. 
Evidently, all of these frontal currents are geostrophic (Ro << 1). 

It is also worth noting that the condition of geostrophy 

RO = Gu/(fL) 4 1, ( 5 )  
where 6u is the velocity variation, entails a constraint on the width L of the geostrophic 
current. First we shall assume that the flow and density variations are localized in the 
upper (active) layer of effective depth HI  (this upper layer is not necessarily thin). Then, 
taking into account that the geostrophic velocity scale is 
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K 0, 0 2  SA STl ST, 
L (km) 70 40 55 85 195 75 

@/Po x lo4 6 3 2 5 6 10 

Su (m s-l) 0.5 0.25 0.1 0.3 0.2 0.45 
Ro 0.083 0.069 0.020 0.036 0.014 0.088 

P 0.013 0.008 0.007 0.009 0.021 0.032 
TABLE 1. Parameters of the North Pacific frontal currents: L is the horizontal spatial scale of the flow, 
6u is the velocity variation corresponding to L, Ro is the Rossby number, &/Po is the relative density 
variation and the parameter P is given by ( l ) ,  where the total depth of the fluid was H = 5500 m for 
all currents. K = Kuroshio; 0, = Oyashio, the strongestjet; 0, = Oyashio, the weakestjet; SA = the 
subarctic front; ST, = the subtropical front, northern jet; ST, = the subtropical front, southern jet. 

where SH, is the depth variation of the upper layer, we assume that 8Hl is of the order 
of Hl (large-amplitude flow) : 

&HI - H,. 

We obtain (R;/L)' = RO + 1, (6) 
where RI, = (gH,/Gp/p,,):/f is the upper-layer deformation radius. It should be 
emphasized that condition (6) is not an additional assumption, but follows singularly 
from the geostrophy condition (5). In order to reconcile (6) with our understanding of 
oceanic fronts, it should be noted that L is not the width of the density front, but that 
of the corresponding density-driven current : the difference between the former and the 
latter is best illustrated by the two-layer model, where the width of the density front 
is equal to zero, whereas the geostrophic flow can be arbitrarily wide. Finally, as (6) 
restricts the square of L&/L, L does not have to be very large to satisfy the condition 
Ro + 1. It should also be made clear that (6) is not valid for small-amplitude 
geostrophic flows. 

Now, in order to distinguish the cases of strong and weak /?-effect, we shall calculate 
/? using (1) and (2). Table 1 shows that K, 0, and SA correspond to the weak-/?-effect 
regime (p 5 Ro:), whereas ST, corresponds to the strong-,&effect regime. 0, and ST, 
should be treated as intermediate cases. 

Thus, we conclude that: (i) most of the major oceanic fronts are geostrophic; (ii) 
there are examples of both strong- and weak-/?-effect regimes in the real ocean. 

The case of weak /?-effect and continuous stratification is covered by Benilov (1993); 
the case of strong /?-effect will be considered in the present paper. 

3. Basic equations 
The equations, which govern a layer of ideal stratified fluid on the /?-plane, are 

Here I u,+uu,+vu,+wu,+P, = (1 +py>v, 
u,+uu,+vu,+wv,+P, = -(1 +py>u, 

4 = -p, 
uz+vy+w,=o,  
p,+up,+up,+wp, = 0. 

2 y" z" 
t = K  x=- , y = - ,  z = -  

Rd Rd H' 

(7) 

6-2 
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where His  the total depth of the fluid, R, is given by (2) and the dimensional variables 
(the spatial coordinates (a, j ,  !2), the time ?, the velocity (u“, 5,  G), the pressure P“ and the 
density i7) are marked with tildes. 

Equations (7) will be scaled in terms of t: = Roi: 

(8) ’1 
t = e-3t’, x = e-lx’, y = €ply’, z = z 

P = P ,  u = €U’, v = EV’, w = €3w’, 

p = pl, p =  2p’. 

Scaling (8) corresponds to flows with the following dimensional parameters : 

horizontal velocity scale - Ro~R, ,  
horizontal spatial scale - Rop~Rd,  
vertical velocity scale - RO~R, ,  
vertical spatial scale - H, 
displacement of isopycnal surfaces - H ,  
slope of isopycnal surfaces - RoiH/ R,, 
timescale - RO-Y-~, 
p -  Ro. 

Since (8) is very similar to the scaling of the two-layer equations by Benilov (1992), it 
will not be discussed in more detail. 

Substitution of (8) into (7) gives 

€324 + €2(UU, + vu,) + €3WU, + P, = (1 + epy) 21, 

€324 + €2(U21, + 2121,) + €3W21, + P, = - (1 + €By) u, 

u, + vy + €WZ = 0, 

€pPt + up, + vp, + €wp, = 0. 

(9 a> 

(9 b) 

p, = -p, (9 4 
(9 4 
(9 el 

Equations (9) should be supplemented by the no-flow conditions at the rigid 
boundaries 

w = O  at z = - 1 , O .  (10) 

With the help of (9a, b), the horizontal velocities (u, v) can be expanded into the quasi- 
geostrophic series 

(1 1) 1 21 = P, - €pyP, + €“(py)2 P, - J(P, P,)] + O(e3), 

u = - Py + €pyP, - €2[@y)2 P, + J(P, P,)] + O(e3); 

W, = @- 2€p2y) P, + d(P ,  AP) + O(?), 

€et + (1 - €py) J(P, 4) + Wp,, = O(e2). 

where J(P, Q )  = P, Q, - P, Q, is the Jacobian operator. Substitution of (1 1) and (9 c) 
into ( 9 4  e) gives 

( 1 2 4  

(12b) 

Integrating (12a) with respect to z over [ - 1, O] and taking into account (lo), we obtain 
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Now we can omit one of the boundary conditions (10) and keep only 

w = O  at z=-1 .  (13b) 

Equations (12) and (13) are asymptotically equivalent to the original system (9) and 
(10). Expanding the solution into an asymptotic series 

P = P(O)+,P(l)+. . . , 

w = do) + ,w(1) + . . . 
and keeping the zeroth- and first-order terms, we obtain 

Il P:) dz = 0, 

(the equation and boundary condition for w(l) have been omitted). In principle, now 
we should solve (14a-d) with respect to PcO) and then substitute the solution into 
(14e,f). The latter should be treated as a boundary value problem for P(l), and the 
condition of its solvability determines the evolutionary equation for Po). Un- 
fortunately, this standard scheme does not work in our case, as the zeroth-order 
equations (14a-d) cannot be solved in general form. Accordingly, we shall leave (14) 
as it is and, in each particular case, treat it as a simultaneous system for Po) and P(l). 
This procedure will be illustrated in 354 and 5.  

It should also be noted that the solution to system (14) is not unique with respect to 
the first correction P(l). In particular, (10) are invariant with respect to the 
transformation 

P(l) + + const, P:) + const, Pp), 

which corresponds to the infinitesimal spatial shift of Po): 

P(')(t ,x,  y,z)+P(o)(t,x+cconstl,y+econst,,z). 

In order to fix P(l), we should consider the next order of the perturbation expansion; 
however, we shall not do this as all other unknowns in system (11) are fixed 
independently of P(l). 

Discussion 

we split PC0) into barotropic and baroclinic components : 
It is worth noting that (14) does not describe non-zonal barotropicJlows. Indeed, if 

pco)(t, x, y ,  Z) = ~ g ) ( t ,  x, y) + pK)(l<t, x , ~ ,  z), Pg)(t, X, y, Z)  dz = 0, @, 
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FIGURE 1.  A meridional flow with strong barotropic component. System (14) is not applicable. (a) The 
velocity profile of the flow. (b) Solid line: the baroclinic component, dash-dotted line: the barotropic 
component. 

(14d) yields 
a 

--gyt, ax x, y )  = 0, 

which obviously indicates that the barotropic component is, to leading order, zonal: 

non-zonal barotropic component ePcl) - ~ 1. -- baroclinic component pC0) 

This condition should be treated as a constraint imposed on the initial conditions 
allowed. 

The physical meaning of this constraint is obvious : system (14) describes large-scale 
flows, where the barotropic mode is much faster than the baroclinic mode. Indeed, 
using the dispersion relations of the two modes: 

and taking into account that (kR;)’ - Ro (see (6) with k - C’), we obtain 

&/Gc - RO 1. 

As a result, the ‘slow’ asymptotic system (14) does not describe fast barotropic waves, 
which are assumed to be ‘instantly’ radiated away. A similar restriction on the initial 
conditions allowed takes place when we use the quasi-geostrophic approximation to 
filter out gravity waves from the equations of fluid dynamics. 

In order to understand, which initial conditions comprise a strong non-zonal 
barotropic component and therefore cannot be used with system (14), consider the 
vertical profile V(z) of an initial distribution of the meridional velocity. If V(z) 
corresponds to a unidirectional ‘thick’ flow (figure l), the barotropic and baroclinic 
components are of the same order and system (14) is not applicable. Two important 
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FIGURE 2. A meridional flow with counter-current. System (14) is applicable. (a) The velocity profile 
of the flow. (b) Solid line : the baroclinic component; dash-dotted line: the barotropic component. 

examples of mainly baroclinic meridional flows can be seen in figures 2 and 3 :  the 
former includes a counter-current, the latter corresponds to a flow localized near the 
surface of the ocean - in both cases system (14) is applicable. Although in the latter case 
the baroclinic component dominates only in the upper ‘active’ layer (in the bottom 
layer the modes are equally weak), we may say that the baroclinic motion is stronger 
in the mean-square sense. Indeed, if h denotes the depth of the upper layer and z is the 
amplitude of the flow in it, the amplitudes of the modes in the upper and bottom layers 
are 

if z > - h ,  

(see figure 2). Thus, 
h2 

( &J2 dz - ha2 + - - a  - ha2, 
1-h 

ro 

J ( v,,)~ dz - (ha)2; 
-1 

and since h @ 1, it follows that the baroclinic component is stronger. We shall return 
to the localized flows at the end of $5.  

It is convenient to rewrite (14) in terms of the barotropic and baroclinic components 
of P(l) : 

P1) = V t ,  x, Y> + Q(t, x, Y ,  21, 

where Qdz = 0. ( 1 5 4  
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FIGURE 3. A meridional flow localized vertically. System (14) is applicable. (a) The velocity profile of 
the flow. (b) Solid line: the baroclinic component; dash-dotted line : the barotropic component. 

Dropping the superscript''), we write system (14) as follows : 

I W, = PP,, 
w = O  at z = - 1 ;  

J(P,P,)=O, l l P x d z = O ;  

PYX + 1 J(P, AP) dz = 0. 

P , t  + J(y+ Q, P,) + J(P, Q,) + w e z  = 0, 

1 

It should be recalled here that w(t, x ,y ,z)  is the vertical velocity, P(t, x,y, z) describes 
the baroclinic and zonal barotropic components of the flow, Y(t, x, y )  is the amplitude 
of the barotropic non-zonal component and Q(t,x,y,z) is the first correction to the 
baroclinic pressure field. 

Although system (15) looks very complicated, it includes at least two tractable 
particular cases. 

4. Stability of zonal flows with both vertical and horizontal shear 
A steady zonal current is described by the following solution to system (15): 

P = P ( ~ , z ) ,  w = 0, Y = Yb), Q = 0. (16) 
In this section we shall examine the stability of (16) with respect to small-amplitude 
perturbations. 

Linearizing (1 5) against the background of (16), we seek a harmonic-wave solution: 

P(4 x, Y ,  4 = P(Y, z> +P(Y, 4 exp [ik (ct - x>I, 
w(t, x, Y ,  4 = W ( Y ,  4 exp [ik ( C t  - 43, 
Q(t, x, Y ,  4 = d y ,  4 exp [ik (ct - 4 1 ,  

P(t, x, r) = W )  + $(Y) exp w (ct - 4 1  ; 
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where k and c are respectively the wavenumber and the phase speed of disturbances. 
Substitution of these equalities into (15) gives 

r qdz=O, 

As this boundary-value problem is of first order with respect to z, the vertical structure 
of the solution can be found explicitly. Introducing 

U(Y, 4 = - P,’ 

we can express p ( y ,  z) and w(y, z) in the form 

where A ( y )  is an undetermined function which describes the horizontal structure of the 
disturbance. Substitution of (18) into (17c, e) gives 

Uq, - uz 4 = [(c + q A + $1 u2 -PAP,, (194 

09b)  $ = [(FA,), - k2FA] ; 

where F=’r  Udz .  
P -1 

Equation (19 a) can be readily solved : 

where B(y)  is an undetermined function and z , (y)  is such that ~ y , z , ( y ) ]  += 0. 
Obviously, q(y,  z) is continuous even at those points where U = 0. Now we substitute 
(20) into (17d): 

- (FA,)y + (C + k2F+ Gj  A = 0, (21 4 

where G( y )  = Y, - p 1, U( y ,  z )  lo P,’zr(y’ U( y ,  z”) dz” dz’ dz 
cr“(Y,Z’) -1 

and F(y )  is given by (19c). Equation (21 a) and the boundary condition 

A+O as y-tfcc, (21 b) 
form an eigenvalue problem for A ( y )  and c (the latter is the eigenvalue). Although one 
cannot solve (21) in general form (for unspecified F(y)  and G(y)) ,  it is possible to prove 
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that Im c = 0 (a similar equation was considered by Benilov 1992). Multiplying (21 a) 
by A* (the asterisk denotes complex conjugate) and integrating with respect to y over 
(- 00, a), we obtain 

I,+I,c = 0, 

where I ,  = !-r [PIA,I2 + (k2P+ G )  IAI'] dy, I ,  = 

Since I, =I 0, the phase speed c = - I J I ,  is real. The non-existence of unstable wave 
perturbations is proven, which is usually accepted as a proof of stability. 

Discussion 

It should be emphasized that the above proof of stability fails if F(y )  (given by (19 c)) 
vanishes at a finite value of y .  Indeed, in this case the coefficient of the highest 
derivative in (21 a) vanishes, the eigenfunction has a singularity and the integrals Il and 
I ,  may diverge (this possibility was missed by in the two-layer study of Benilov 1992). 
However, this case is of a little practical interest, as it assumes that the level surface of 
zero velocity is ideally vertical (see (19~)).  

It is also worth noting that the stability of a flow within the framework of system (15) 
does not necessarily guarantee its stability within the framework of the original 
equations (7). Moreover, the results obtained in the two-layer case (Benilov 1992) 
indicate that zonal flows are weakly unstable with respect to short (k& - 1) 
disturbances even if the p-effect is strong. Nevertheless, this effect is unlikely to 
'destroy' the flow: it may be conjectured that such short-wave instability leads to 
randomization of unstable disturbances, and the resulting turbulent friction stabilizes 
the flow. Eventually, the instability may saturate at some level. 

In principle, a disturbance, whose length is comparable with the width of the flow, 
could destroy the latter, but the above results prove that all such disturbances are 
stable. 

IAI2 dy. P -m 

5. Separation of variables in system (15) 
It was demonstrated by Benilov (1993) that the vertical and horizontal spatial 

variables in the equations which govern the case of weak p-effect can be separated. In 
this section we shall obtain a similar separable solution for the case of strong p-effect 
(i.e. for system (15)). 

We shall seek a solution to (15) in the form 

where $(z) describes the vertical profile of the baroclinic 'quasi-mode' and satisfies the 
boundary conditions 

We shall also assume that 
$ = O  at z=-1,O. (23 a> 

[($,)'dz = 1. (23 b) 

Substitution of (22) into (1 5 e) yields the equation for the barotropic-mode amplitude : 

/3Y, + J(@, A@) = 0. (24) 



Dynamics of large-amplitude geostrophic ftows 167 

where 

characterizes the vertical density advection (the last term in (1 5 c)). Equation (27 c) can 
be readily solved: 

where zo is an arbitrary point such that &(z0) $. 0. Multiplying (27b) by y, adding it 
to (27a) and taking into account (27d), we obtain the following equation for the 
baroclinic-quasi-mode amplitude : 

Qt + J( Y, @) + yp@rP, = 0. (29) 

Equations (24) and (29) form a closed system for Y(t, x, y) and @(t, x, y) .  Although 
these are two-dimensional functions, solution (22) describes three-dimensional flows. 

In principle, the system (24), (29) can be generalized for an arbitrary number of 
baroclinic quasi-modes, each of which is defined in a separate layer. We shall not dwell 
on this question in detail, but refer the reader to Benilov (1993) where the ‘n-quasi- 
mode’ equations were derived for the (similar) case of weak p-effect. 

Discussion 
As mentioned above, similar separable solutions with arbitrary vertical profile 

(‘quasi-modes’) were found in the case of weak p-effect (Benilov 1993). The fact that 
they have arisen again indicates that quasi-modes might be an inherent feature of the 
asymptotic dynamics of all large-amplitude geostrophic flows. 

Remarkably, the analysis of experimental data (e.g. Vasilenko & Mirabel 1977), as 
well as recent numerical results (Killworth 1992), suggest that in many instances the 
baroclinic component of oceanic flows can be approximated by a single baroclinic 
mode. This is a strong argument in favour of our model. 

In conclusion, we shall calculate the coefficient of vertical density advection y for the 
simplest specific case where the profile of the quasi-mode is linear in the upper layer of 
thickness h and constant in the bottom layer (see figure 2). Choosing the form of $(z) 
to satisfy constraints (23), we get 

[(z + h) H(z + h) -$h2], 
1 ’ = ($3 -+h4): 
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where H(z)  is the Heaviside step function: H(z 2 0) = l,H(z < 0) = 0. Substitution of 
(30) into (28) gives 

Evidently, if h +. 0, y z - h-;+ co, which indicates that the limit of a 'thin' upper layer 
is singular. Substituting (30) into (22) and writing the geostrophic criterion as P 4 E-', 

we obtain the condition h 9 Ro. Thus, in application to surface-localized flows, the 
system (24), (29) is valid only in the narrow asymptotic region 

1 9 h + Ro. 

This agrees with the results obtained by Cushman-Roisin et al. (1992) for the two-layer 
stratification, where the limit h 5 Ro yields an extra term in the baroclinic-mode 
equation. 

6. Conclusions 
The main results of this paper are: 

(i) the derivation of the asymptotic system (15) which governs the dynamics of 
geostrophic flows with large displacement of isopycnal surfaces in the limit of strong 
/?-effect; 

(ii) the proof of stability of a zonal flow with both vertical and horizontal shear 
within the framework of system (1 5 )  ; 

(iii) derivation of the two-dimensional system (24), (29) which describes a 
superposition of the barotropic mode and baroclinic ' quasi-mode ', the vertical profile 
of the latter being arbitrary. 

It should be emphasized that the results obtained are not applicable to flows with 
strong non-zonal barotropic component, or localized in a thin 'active' layer where the 
parameter 

thickness of the active layer 
total depth of the ocean 

h -  

is of the order of, or less than, the Rossby number. As ocean data indicate that 

It is also worth noting that the comparison of the two-layer model (Benilov 1992) 
and the continuous model of stratification (Benilov 1993 and the present paper) 
demonstrates a remarkable agreement : both models indicate stability/instability in the 
cases of strong/weak /?-effect, respectively. This suggests that the two-layer model is a 
good approximation for all large-amplitude geostrophic flows. 

h - 1-1 the latter case deserves an additional consideration. 
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